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A numerical study of the general Rayleigh’s piston model 
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Received 17 March 1980, in final form 3 July 1980 

Abstract. We describe a detailed numerical investigation of the spectrum {Ak, A} of the 
Rayleigh singular integral operator .P, governing the one-dimensional test-particle gas at 
mass ratio y (Rayleigh’s piston). Results confirm that the discrete spectrum & ( Y )  is empty 
apart from the equilibrium eigenvalue, A. = 0, in the range y > 0.28 . . . , but acquires new 
points in a regular manner as y decreases. Thus the discretum interval A k  E [0, 11 is 
gradually filled to ever-increasing density as the Brownian motion regime y << 1 is reached. 
Spectra and eigenfunctions, together with derived results for the velocity autocorrelation 
function and complex admittance for charged test particles, are used to illustrate the 
effectiveness of the Rayleigh-Fokker-Planck approximation based on the artificial 
assumption y + 0. 

1. Introduction 

The general Rayleigh problem (or one-dimensional test-particle gas) may justly be 
described as the prototype for all linear statistical-dynamic models which retain at least 
a vestige of geometrical and mechanical reality (Rayleigh 1891, Hoare and Rahman 
1973 and references therein). We refer here to the unsimplified case in which an 
ensemble of test particles of mass M undergoes interaction with a one-dimensional heat 
bath of particles of mass m and at temperature T, reserving the term special Rayleigh 
problem for the case m = M  to which we have devoted most of our attention so far 
(Hoare and Rahman 1973,1974,1976, Barker e ta l l977 ,  Raval1978). The mass ratio 
y = m / M  is thus of primary interest (figure 1). 

Figure 1. The Rayleigh piston. A piston of mass M snd cross section (+ undergoes random 
collisions with a one-dimensional heat bath of particles, mass m. The velocities of the heat 
bath particles are Maxwell distributed at temperature T and their number density is n per 
unit volume. y = m / M .  

Mathematically, the Rayleigh problem is defined by the singular Master equation 
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in which P(x,  t )  is the probability density for test particles at velocity x and dy is a 
singular integral operator having the kernel 

A ( y , x ) = K ( y , x ) - z ( x ) S ( x - y )  (1.2) 

~ ( y , x ) = ~ ’ I ~ - y l  exp{-[(y -x)cr+xI’I (1.3) 

with 

and 
W 

K ( x ,  y)dy  =exp(-x2)+v1/’x erf(x). (1.4) 

Here p relates to the mass ratio as =(1+ y ) / 2 y  and x and y are scaled to real 
velocities V and V’ as x = ( m / 2 k B T ) ’ l 2 V  and y = (m/2kBT) l / ’V’ .  As in earlier work 
we use the time scale T= n u ( 2 k , T / ~ m ) ” ~ t  with n and U the effective number density 
and cross section of test particles respectively. The kernel K(x,  y )  is referred to as the 
transition kernel for scattering x + d y  about y and its integral ~ ( x ) ,  which rises 
monotonically from a minimum at z ( 0 )  = 1, represents the collision rate per scaled time 
for a test particle moving with velocity x. Here we may note that, in the present scaling, 
the equilibrium distribution of test particles becomes 

P(X, 00) = (.rry)-’/’ exp( - x’/ y )  (1.5) 

which may easily be shown to satisfy d,P(x, 00) = 0. 

particles 
As a final preliminary we may note the mean equilibrium collision number for test 

W 

5, = 2 jo z (x )P (x ,  CO) dx = 2( 1 + y ) ’ l 2 .  

This may be used to define an alternative time scale 7’ = 2(1 -t y ) ’ ” ~ .  The difference 
between the two scales is relatively minor in the interesting range of mass ratio 

With the exception of the two special cases y = 1 and y + 0, very little is known 
about the form of solutions to (1.1) or the underlying spectral properties of the operator 
d,. All we can say with certainty is that the singular character of d, manifests itself in a 
continuum spectrum A E [l, CO] to which a discretum A k  E [0, 11 is added in a certain 
interval of y. As the mass ratio is varied, the discretum is believed to consist of a finite 
set of eigenvalues: 1 >A,,, > . . . > A 2  > A > A. = 0, which becomes empty except for 
the isolated equilibrium eigenvalue A. = 0 above a certain threshold y > yo for which 
Al(yo)+ 1. The emptiness of the finite discretum A E (0, 11 was demonstrated for the 
particular case y = 1 (the special Rayleigh problem) by Hoare and Rakmai? (1973) but 
the presence of a finite empty region for y > yo as well as the non. exiqtence cf an infinite 
discretum with point of accumulation was a matter of conjecture, until recently proved 
by Driessler (1980). In singular stochastic problems of this kind, the finiteness of the 
discretum is by no means to be taken for granted; indeed in the case of the three- 
dimensional hard-sphere gas (about which, incidentally, rather more is known than for 
one dimension) there is an infinite discretum at all mass ratios with a point of 
accumulation at the continuum threshold A = A  * = 1. (See e.b. Hoare 1971, Hoare and 
Kaplinsky 1975, Shizgal 1979.) The distinctions between these types of spectra are 
made clear in figure 2. 

Y E (0, 1). 
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Figure 2. Possible types of spectra for the Rayleigh transition operator d,,. ( a )  Discretum 
empty for A E (0, ~ ( 0 ) ) .  ( b )  Finite discretum 0 = A o < A l . .  . < A k  < z ( o ) .  (c )  Infinite dis- 
cretum with point of accumulation such that h k  + z(0)  as k +CO. ( d )  Numerical approximate 
spectrum with converged discretum and ‘pseudo-eigenvalues’ A k  > ~ ( 0 ) .  ( e )  Spectrum for 
system approaching the Brownian motion limit with y<< 1. The continuum A E ( z (O) ,  CO) 

and the equilibrium eigmvalue A. = 0 are always present. 

There remains the somewhat insecure knowledge of the limit y -$ 0 in which the 
behaviour of the test particles assumes the character of Brownian motion. Since 
Rayleigh many authors have studied this approximation, both as a form of idealised 
limit and a supposedly useful description of systems at small but finite mass ratio (Van 
Kampen 1955,1961, Akama and Siege1 1965a, b). The difficulties of this approach are 
well known and need not concern us in detail here. It may, however, be asserted with 
some confidence that in the passage to the limit y -$ 0 the discrete spectrum Ak ( y )  
becomes infinitely dense over the interval A k  E [0,1] and may, by a further time scaling 
T~ = r/4 y”*, be mapped onto the integers A 

W h ~ z  it is tempting to search for an exact solution to equation (1.1) along the lines 
successful in the case of y = 1 (Barker et a1 1977, Raval 1978), nothing in the character 
of the operator d,  or its three-dimensional analogue lends much hope to this enterprise 
and our efforts in this direction have led to little worth reporting. 

The time would therefore seem to have come for a thorough numerical study of the 
operator d,  which might shed light on its spectral characteristics and put our know- 
ledge in this respect on a similar footing to that available for some time in the 
three-dimensional caset (Hoare .and Kaplinsky 1975). More broadly, we might define 
our objectives as follows: 

= k + 1 (Hoare and Rahman 1973). 

t A number of comments are in order. The computations on the three-dimensional hard-sphere gas refer to 
the Wigner-Wilkins kernel for the half-range problem of energy relaxation with a kernel of type K ( x Z ,  y z ) ,  
x ,  y E (0, CO) (Wigner and Wilkins 1944, Andersen and Shuler 1964). Thus a proper comparison would be 
with the half-range one-dimensional problem of either energy relaxation ( K ( x z ,  y z ) )  or speed relaxation 
(K(lx1, I y l ) ) .  However the speed kernel is simply the even component of the Rayleigh kernel (1.3) and its 
spectrum consists of the even subset of the full-range spectrum { A k } .  (Actually k = 0 ,2 ,4 ,  . . . , as we may 
deduce from the parity of the Hermite polynomials and the fact that the spectrum curves h k ( y )  cannot cross.) 
With this in mind, a qualitative comparison of one- and three-dimensional models is possible. We note in 

passing that no kernel is available for the study of two-dimensional (hard-disc) scattering. Likewise, no 
spectral computations have been attempted on the full three-dimensional vector kernel K ( x ,  y) .  (Nielsen and 
Bak 1964). 
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(a) To determine the behaviour of the discrete spectrum {Ak(?)} of the operator d ,  
over as large a range of mass ratio as possible, paying special attention to the finiteness 
or otherwise of the discretum and the behaviour of discrete relaxation modes in the 
immediate neighbourhood of the discretum. 

(b) To compare, at least qualitatively, the spectra for one- and three-dimensional 
hard scattering. 

(c) To assess the relative contributions of discretum and continuum to the evolution 
of the system, its equilibrium fluctuations and related transport properties. 

(d) To investigate the effectiveness of the Fokker-Planck approximation to d,  and 
its spectrum in the region y << 1 and of possible improvements on this. 

Bearing in mind the enormous literature on the Fokker-Planck equation and 
related aspects of Brownian motion, and the extreme rarity of cases where any kind of 
measure of the approximation against numerically soluble models is available, item (d) 
alone might almost be considered a principal justification for this paper. 

2. Qualitative properties of the kernel 

As a first step we prepared a series of graphical displays of the regular part K ( y ,  x) of the 
transition operator. These figures were of considerable help in planning detailed 
computations and their study gives a number of insights into the relaxation behaviour at 
different mass ratios. Two of them are shown in figure 3 for mass ratios y = 1.0 and 0.5 
respectively. Comparison of the figures shows the beginning of the tendency whereby 
the symmetric peaks narrow and encroach upon the diagonal as the Brownian motion 
limit y + 0 proceeds. The discontinuity of the first derivative at the diagonal x = y is 
also clearly apparent. We need hardly point out that the vanishing of K ( x ,  y )  at the 
diagonal, which is a consequence of the Ix - yI factor, has no analogue in the three- 
dimensional hard-sphere case of the speed or energy kernel (Wigner-Wilkins kernel) 
which we studied previously. A plot of the collision number function z ( x )  is also given 
(figure 4). This shows Z(X) to be very close to its asymptotic form z ( x )  - 7r1/'x for 
x > -1.5, corresponding physically to the condition where the heat-bath particles are 
effectively stationary with respect to the moving test particle. 

3. Analytical prerequisites 

We may refer to Hoare (1971) for a detailed account of equation ( l . l ) ,  its solutions and 
their approximations. Here we confine ourselves to a brief statement of the spectral 
form of the solution and its relation to our present numerical algorithm. 

The time evolution of the probability density P ( x ,  T )  under the operator d,  may 
most conveniently be written 

P(x,  T )  = P(x,  cy)) + P ( x ,  cy))1/2S*\E(0,00]a(A)N(x, A )  exp(-hT) (3.1) 

using the symbol S to indicate summation or integration, as appropriate, over the range 
shown in the subscript, and denoting by N(x ,  A )  the eigenfunctions of the self-adjoint 
operator 

93, E G ( x ,  y ) + z ( ~ ) 6  ( X  - y ) 
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Figure 3. The symmetrised Rayleigh transition operator G(x, y) (equation (3 .3)) .  Above 
y = 1.0. Below y = 0.5. The coordinate origin is at the centre of the figure in each case, the 
diagonal x = y running between the peaks. Note the discontinuity of the first derivative 
along this line. 

the regular part of whose kernel is related to K(x,  y )  by the similarity transformation 

G(x,  Y )  = K(x,  y)[P(x,  ~ ) / P ( Y ,  0011''~ = G(y, x). 

G(x,  Y )  = p21x - Y  I e x p [ - h 2 +  y 2 ) - p ( p  - l ) (x - y ) * J .  

P(x,  0O)K(x, Y )  = P(Y, m)K(y,  x)  

(3.2) 

Substituting from (1.5) we obtain after slight rearrangement 

(3.3) 

The symmetry of G is assured by the detailed balance property 

(3.4) 

as is the equilibrium condition 
00 

z ( x ) P ( x ,  00) = j-m K ( y ,  x)P(y,  00) dy (3.5) 

with P(x, 00) given by equation (1.5). 
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1 2 3 
1x1 

Figure 4. The collision number function z ( x )  = exp(-x2) + TT”‘ erf(x) for Rayleigh test 
particles. The asymptote z (x)  - T ” * X  is shown dotted. 

Since the spectrum is invariant under the transformation (3.2) while the singular 
component of dV is diagonal, it is obviously to our advantage to work with the 
symmetric eigenvalue equation 

or, as it is more natural to write when the discrete part of the spectrum is of interest: 

(3.7) 

It will be seen that, on choosing the appropriate normalisation, we can express the 
equilibrium condition by A. = 0 and @o(x)2 = P(x, E )  = (T?)-’ exp(-x2/y). With this 
in mind we have separated the A 0  = 0 point on the right of equation (3.1) to leave a 
purely transient term under the S symbol. 

In this paper our main attention goes to the solution of equations (3.6) or (3.7) using 
a simple discretisation method. We now turn to the details of this. 

4. Description of the method 

In our earlier study of the three-dimensional hard-sphere gas (Hoare and Kaplinsky 
1975) we used a Rayleigh-Ritz method for the reduction of the eigenvalue problem 
ay@ = A @  to an algebraic one. The polynomial set chosen as basis was that of the 
Laguerre polynomials {Lf”’(x)} which are known to be exact left eigenfunctions of the 
transition operator in the Brownian limit Y -+ 0. Although the Rayleigh-Ritz method is 
theoretically to be preferred because an N x N approximation may be refined without 
recalculation of the previous expansion matrix, in practice this is a slender advantage 
and the alternative of using a simple discretisation of the integral eigenvalue equation is 
neither difficult nor particularly wasteful of computing time. A proper discretisation 
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may indeed be somewhat more efficient than a RR method in as much as the discretised 
kernel remains strictly positive and the negative-going regions associated with poly- 
nomial expansions are avoided. A similar approach has been used for neutron 
thermalisation calculations in three dimensions (Wood 1965). 

Thus we replace equations (3.6) and (3.7) by a comparable discretised form 

N 

j = l  
[zi - A ] @ j ( A )  = 1 Gjj@j(A) (4.1) 

which has the matrix equivalent 

[Z- A I]@= G@. (4.2) 

Having fixed N, the matrix elements Gij are determined at the meshpoints as Gii = 
G(ih,jh) with the given mesh interval h. As will be clear on studying the graphical 
representations in figure 3, the choice of h and N must be made with some care. 

We did not determine the diagonal matrix 2 by discretisation of the collision number 
function z ( x )  but instead generated it self-consistently in such a way as to conserve 
probability. Thus, using the transformation (3.2) with the discretised equilibrium 
distribution (1.5), we see that the required value is 

N 

zi = h exp[(ih)’/2y] 1 Gii exp[-(jh)’/2y]. 
j = 1  

(4.3) 

In this way the eigenvalue A. = 0 is guaranteed. 
The correspondence between an approximate spectrum { i k } ,  obtained by solution 

of equation (4.2)-which is necessarily discrete-and the true spectrum { A k ,  A }  has been 
discussed in detail by Hoare (1971). Briefly we may say that, as with quantum 
mechanical systems, a ‘target’ eigenvalue A k  in the discretum is well approximated by 
taking a sufficiently detailed representation of the operator, provided that it lies well 
clear of the continuum threshold A * .  (By ‘representation’ we mean either a Fourier 
expansion in basis functions or equally a discretisation seen as an approximation in step 
functions.) In this case a sequence of approximate eigenvalues f i k  will be found to 
converge more or less rapidly to the true value: i k  + Ak.  If, however, the ‘target’ 
eigenvalue is near the continuum, poor numerical convergence will be found, with the 
approximate i k  moving down through the latter towards the ‘true’ value. If a very 
detailed representation is attempted where there are few or even no discrete eigen- 
values, then a non-convergent ‘spread’ of approximate i k  will be found, many of which 
will be unrelated to any given discrete A k  and yet, to an unknown degree of approxima- 
tion, may be expected to ‘represent’ the continuum contribution to the action of the 
evolution operator d, (figure 2(d)). An extended account of the properties of the 
numerical i k ,  including the ‘pseudo-eigenvalues’ i k  > 1 located in the continuum, will 
be found in Hoare (1971) and Hoare and Kaplinsky (1975). They need be of no further 
concern to us in this paper. 

Finally we should recall that, with the continuum bounded below at A ”  = 1, any 
errors due to its neglect or faulty approximation will, so long as a discrete spectrum 
actually exists, only affect the time evolution appreciably in the regime f < -,?(U)-’, that 
is T < -1. When the discretum is empty, as we know to be the case for y = 1, the 
situation is clearly more complicated, though we can see that the modes close to the 
continuum threshold will tend to dominate increasingly as the system ages. 
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5. Computational procedures 

Our main computational exercise was to determine eigenvalues and eigenvectors of the 
symmetric matrix [G - Z] for a representative range of mass ratios in the range y < 1. 
The subroutines used were from the NAG library and were run on the University of 
London CDC 7600 computer. Matrices up to 400 x 400 could be handled, though in 
almost all cases a 200 X 200 discretisation proved sufficient for our purpose. In practice 
preliminary runs were made using a 50 x 50 discretisation to determine the cutoff to the 
kernel G(x, y )  using a criterion that the determined eigenvector components at the 
boundary meshpoints should be no more than of the maximum components. 
Having assigned a cutoff in this way, accurate computations were performed at each 
mass ratio with increasing values of N as a check on convergence. We were somewhat 
surprised to find that, even in the case of eigenvalues very close to the continuum, 
convergence was never a serious problem and all figures quoted in the tabulations in 8 6 
are significant. In scanning the range of mass ratios a preliminary tabulation was carried 
out for y = 2-k ,  k = 0(1)7. Intermediate values were then computed to establish the 
behaviour of the first few eigenvalues close to the continuum and interpolations were 
made as required for graphical presentation of the eigenvalues. 

As the massive amount of data on approximate eigenvector components was of little 
use as it stood, we converted it to a much lower-order Fourier-Hermite representation. 
Our use of the basis functions {&} for this purpose was partly a matter of convenience, 
but also in the knowledge that the ‘pure’ Hermite functions (exp(-x2/y)Hk(x/y1”)} 
are the natural choice for a function set complete and orthogonal with respect to the 
Maxwellian as weight function, as well as forming, incidentally, the exact eigenfunctions 
of the ‘Fokker-Planck’ operator %y which we introduce in the next section. 

There is reason to hope that the Fourier-Hermite representation may be ‘nearly 
diagonal’ over an altogether broader regime of mass ratio, possibly even, as some 
authors have implied, in the vicinity of y = 1. However, in contrast to Rayleigh-Ritz 
methods which provide Fourier coefficients directly, use of a discretisation requires that 
we extract them by carrying out a Fourier-Hermite transformation of the ‘raw’ 
eigenvectors of the matrix G - 2. This presented no difficulty and was carried out by use 
of Simpson’s rule on the eigenvector components weighted by Hermite functions on the 
same discretisation grid. 

As a preliminary to our calculations, we made a few determinations of eigenvalues 
and eigenvector components for the hard-sphere gas, comparing the discretisation 
results with the Rayleigh-Ritz ones of Hoare and Kaplinsky (1975). Over a series of 
spot checks, agreement was of the order of 5 % .  

6. Results and interpretation 

6.1. The eigenvalue spectrum 

The essential content of our results is seen most strikingly in the families of discrete 
eigenvalues plotted as a function of mass ratio in figure 5 .  The pattern indeed confirms 
the qualitative behaviour predicted earlier wherein the discrete eigenvalues emerge 
successively from the continuum and converge ever more densely into the interval [0,1] 
as the mass ratio tends to zero. Notably, not a single eigenvalue could be found to 
emerge from the continuum until the point y = 0028; moreover the prekence of the 
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Conti n u  u m j 

loc  l o - ’  10-2 1 0 . ~  
Y 

Figure 5. Numerical eigenvalues A of the Rayleigh transition kernel (equations (1.2) to 
(1.4)) as a function of mass ratio y. The discretum is seen to be empty in the range 
approximately y > 0.28. 

continuum threshold was faithfully reflected in the boundary between ‘convergable’ 
and ‘non-convergable’ f i k  as the mesh size for the discretisation was diminished. 
Although for clarity we have only shown the first seven curves, the pattern continues in 
the same manner with what seems to be a regular increase in the density of points in the 
unit interval. As far as can be determined, given the weak convergence of points very 
close to the continuum, the curves hk(y) emerge at an appreciable angle to the 
continuum edge, there being no indication of a tangential flattening to a point of 
accumulation, such as is found in the three-dimensional case. We have not shown the 
continuation of the discrete h k  into ‘pseudo-eigenvalues’ within the continuum since 
the position of these is a function of the mesh size and has no absolute importance. 
Nevertheless, it may be observed that, for N sufficiently high to give convergence of the 
discretum, the non-converged extensions of the curves shown were smooth extrapola- 
tions of negative slope, which showed no tendency to return to the discrete interval on 
increasing the mass ratio into the Lorentz region y 2 1. This confirms, so far as a 
numerical computation can, that the discretum indeed remains empty as the mass of the 
heat-bath particle increases to infinity. A few numerical values of the discrete A k  are 
tabulated along with the eigenvector components in tables l ( a )  to (f). These are scaled 
as Ak/4y for reasons which will be evident in the next section. 

6.2. Eigenvectors and the Fokker-Planck equation 

It is widely believed that in the regime y << 1 the effect of the operator dy may, under 
certain conditions on P(x,  T ) ,  be reproduced by the differential operator 

y a’ a 9 y = - ~ + x - + l  
2 ax ax 

together with a rescaling of the time in terms of the mass ratio. Thus if TR = 4 y~ we find 
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Table 1. Rayleigh piston eigenfunctions in the Fourier-Hermite representation. Each 
column gives the expansion coefficients Lqk for the eigenfunction N i ( x )  in terms of the set 
{exp(-x2/y)H~(x/y1”)} which are exact in the limit y+O. All figures shown are 
significant. Asterisks indicate values absorbed into the continuum. The diagonal elements 
are in bold face. The i = 0 eigenfunction, for which necessarily a i k  = 6 p o ,  is shown as a check 
on numerical accuracy. 

( a )  y = 2 4  
A : =  0.00000 0.89239 * * * * * * 
k i = O  1 2 3 4 5 6 7 8 

1~00000 
0~00000 
0~00000 
0~00000 
0~00000 
0~00000 

-0~00002 
0~00000 

-0,00005 

0~00000 
0.99562 
0~00000 

-0,08959 
0~00001 
0,02397 
0.00014 

-0,00988 
0.00003 

( b )  y =2-’ 

k i = O  

0 0,99999 
1 0~00000 
2 0~00000 
3 0~00000 
4 0~00002 
5 0~00000 
6 0.00000 
7 0~00000 
8 0.00001 

A ? =  0.00000 0.94139 1,66442 
1 2 

0~00000 0~00000 
0,99944 0.00000 
0.00000 0,99399 

-0.03310 0.00000 
0.00000 -0.10748 
0,00346 0.00000 
0~00000 0~00002 

-0.00062 0,00003 
0.00001 -0,00548 

* * 
4 5 

* * 
* * 
* * 
* * 

* 
* 

* * 
* * 
* * 

* 
7 8 

* * 

* 
* * 
* * 
* * 
* * 
* 
$ * 

(cl r=2-4 
A ? =  0.00000 
k i = O  

0 0.99999 
1 0~00000 
2 0~00000 
3 -0~00001 
4 0~00000 
5 0~00000 
6 0.00001 
7 0~00000 
8 0.00000 

0,96982 
1 

0~00000 
0.99989 
0~00000 

-0,01449 
0~00000 
0.00063 
0~00002 

-0~00021 
0.00005 

1,82346 

0~00000 
0~00000 
0.99903 
0~00001 

- 0.04381 
0,00004 
0,00307 
0~00012 

-0~00120 

247328 
3 

0~00000 
0,01448 
0~00000 
0.99568 
0~00009 

-0,09083 
0.00022 
0 I 0 0 9 2 5 
0.00045 

3.22952 
4 

0~00000 
0~00000 
0,04370 
0~00000 
0.98586 
0.00044 

-0.15915 
0.00077 
0.02209 

3,80053 
5 

0~00000 
0,00063 
0~00000 
0,09004 
0*00004 
0,96149 
0.00157 

-0.25255 
0.00187 

* 
6 
- 
* 

* 
* 
* 
* 
* 
* 
* 

7 
- 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
8 

- 
* 

* 
* 
* 
* 
* 
* 
* 

( d )  y=2-5 
A y  = 0.00000 0,94632 1,83613 2,76440 3.46240 4.39497 4.90453 6,16978 6,87916 
k i = O  1 2 3 4 5 6 7 8 

0,99999 
0~00000 
0~00000 
0~00000 
0.0 0 0 0 0 
0~00000 
0~00000 
0~00000 
0~00000 

0~00000 
0 * 9 9 9 9 9 
0~00000 

-0.00650 
0~00000 
0.00014 
0~00000 
0~00000 
0~00000 

0~00000 
0~00000 
0.99984 
0~00000 

-0,01896 
0~00000 
0.00064 
0~00000 

-0.00006 

0~00000 
0~00000 
0~00000 
0099930 
0~00000 

-0,03786 
0~00000 
0.00187 
0~00002 

0.00003 
0~00000 
0.01896 
0~00000 
0.99777 

-0~00001 
-0,06375 
-0,00004 

0.00426 

0~00002 
0~00000 
0~00000 
0.03785 
0~00000 
0.99457 
0~00010 

-0.09736 
0~00020 

0~00000 
0~00000 

-0,00056 
0~00000 
0,06368 
0~00000 
0.98791 
0.00004 

-0.13989 

0~00001 
0~00000 
0~00001 
0,00178 
0,00007 

-0,09632 
-0.13789 

0,97564 
0,00165 

0~00000 
0,00003 
0~00000 

0,00006 
0~00000 

-0.00025 
-0~00001 

0.95335 

d~00000 
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Table l-continued 

( e )  
h p  = 0.00000 0,99245 1595424 2.88640 3.79048 4,67028 5,53489 6.40040 7,28600 
k i = O  1 2 3 4 5 6 7 8 

0.99999 
0~00000 

-0~00011 
0.0 0 0 0 0 
0~00000 
0~00000 

-0~00001 
0~00000 
0.00004 

0~00000 
0.99999 
o*ooooo 

-0.00349 
0~00000 

-0~00002 
0.00003 

-0~00018 
0.00005 

0~00011 
0~00000 
0.99998 
0~00000 
0,00985 
0.00006 

-0,00029 
0,00016 

-0~00110 

0~00000 
-0.00348 

0~00000 
0 * 9 9 9 9 5 

-0.00016 
0.01993 

-0.00035 
0.00203 

-0.00103 

0~00000 
0~00000 
0.00974 
0,00006 
0 * 9 9 9 8 7 
0.00092 

-0,03561 
0.00142 
0,00067 

0~00000 
-0~00002 

0~00000 
0,01915 
0,00037 
0.99970 

-0.00374 
0,06736 

-0.00876 

0~00000 
0~00000 
0.00015 
0~00008 
0.03258 
0,00151 
0.99937 
0,01087 
0,00359 

0~00000 
-0~00001 

0~00000 
0.00060 
0.00039 
0,05221 

-0,00409 
0,99882 

-0.12663 

0~00000 
0~00000 
0.00003 
0,00003 
0,00248 
0,00124 
0.08128 
0.00757 
0 * 9 9 7 9 7 

(f) Y=2-’ 
h p  = 0.00000 0,99744 1,99739 2,94607 3,89775 4,83484 5,75852 6.67232 7.58478 
k i = O  1 2 3 4 5 6 7 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 - 

0~00000 
0.99999 
0~00000 

-0.00141 
0~00000 
0~00000 
0~00000 
0~00000 
0~00000 

0~00011 
0~00000 
0.99999 
0~00000 

-0.00432 
0~00001 
0~00002 
0~00000 

-0,00005 

0~00000 
0,00141 
0~00000 
0.99996 
0~00000 

-0.00863 
0~00001 

-0~00001 
0.00006 

0~00000 
0~00000 
0,00431 
0~00000 
0,99987 
0~00002 

-0.01457 
0~00011 

-0.00044 

0~00000 
0~00001 
0~00000 
0,00861 

-0~00002 
0.99962 
0.00030 

-0.02285 
-0.00053 

0~00000 
0~00000 
0~00000 
0~00000 
0.01438 

-0.00015 
0,99882 
0.00139 

-0.03618 

0~00000 
0~00000 
0~00002 
0,00009 

-0.00003 
0,02192 

-0,00069 
0,99629 
0.00479 

0~00000 
0~00000 
0~00000 
0~00000 
0~00002 

-0,00019 
0.03220 

-0,00233 
0 * 9 8 8 7 6 

by arguments closely similar to those advanced by Rayleigh (1891) that 

replaces satisfactorily the singular Master equation (1 .1) .  The operator %, has the 
complete set of eigenfunctions 

4: (x) = exP(-x2/r)Hk ( X / Y  1’2) (6.3) 

for which the eigenvalues are A k  = k, k = 0, 1, 2, . , , Co. The right-hand side of equation 
(3.1) therefore becomes a simple summation. For the special case P(x, 0) = S(x - xo) 
this summation can be carried out in closed form (Mehler’s formula). The result is 
Rayleigh’s formula, which in our scaled variables reads 

That this approximation covers a multitude of sins is well known, and we have 
previously stressed that, however small a value of y may be taken, any notion of a true 
‘convergence’ of 3, to d, is illusory. 

We see this most clearly in the fact that, in the TR time scale, the continuum 
threshold is displaced not to infinity but only to A -= (4y)-’ so that the (exact!) 
eigenvalues of the operator %, must lie within it for k > - (4y)- ’ .  Our hopes that 
nevxtheless provides a ‘reasonable’ approximation to P(x, T)  rest on the suppositions 
that (a) sufficient true, discrete eigenvalues A k  actually exist and are well approximated 
by A : = 4yk, that all Fourier-Hermite coefficients u k  of P(x, T)  outside the same range 
of k at time T~ are negligible, and/or (b) the infinite ladder of eigenvalues A k  > (4y)-’ is 
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sufficiently dense and otherwise matched to the continuum that the latter is in some 
sense also 'represented', and (c) the matching of approximate polynomial eigen- 
functions to both regular and singular 'true' eigenfunctions is correspondingly 
adequate. (See Hoare and Kaplinsky (1975) for an elaboration of these conditions.) 

While some estimate of the truth of proposition (b) may be possible by a form of 
continuum variation method applied to dy, it is clear that the present computations can 
only help to shed light on proposition (a). As a first step we therefore rescale the spectra 
of figure 5 by A: = Ak/4y. This displaces the continuum and leads to the family of 
curves shown in figure 6 .  Here it can be seen at a glance that, provided the eigenvalues 
concerned are not too close to the continuum edge, the values of A: for small k are 
surprisingly well represented by the integers. While this approximation clearly 
deteriorates with increasing k it is remarkable that the lowest eigenvalue A Y  is quite 
close to unity (0 .89.  . .) even at the point where it emerges from the continuum. 

00-I'' " ' " 

100 lo - '  10-2 10-3 

Figure 6.  Eigenvalues of the Rayleigh kernel in the Fokker-Planck time scale T~ = 47% 

The same pattern is found when we investigate the eigenvectors in their Fourier- 
Hermite representation (tables l ( a )  to (f)). Here we notice immediately the nearly 
diagonal aspect of the low-index part of these matrices even at mass ratios considerably 
higher than would normally be associated with Brownian motion. Reference to the 
corresponding tables for the three-dimensional case in Hoare and Kaplinsky (1975) 
shows that the off -diagonal contributions grow altogether more rapidly in the system of 
hard spheres. In short, the Fokker-Planck approximation appears to be appreciably 
better in one dimension than three, whether judged by the spectra A k  or by the more 
sensitive eigenvectors. 

Lastly we make brief mention of the 'improved' Fokker-Planck estimate proposed 
by Hoare and Rahman (1973). In this work an alternative infinite-order differential 
operator representation for dy was found which, when truncated at second order, 
seems likely to give improved estimates of the spectrum. The values obtained were 
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given by the equation? 

This same expression could be used to predict the point of emergence of the first 
eigenvalue A from the continuum as y = [3(J2 - 1)].-’ = 0.805 . . . . This value could be 
construed as a bound to the region of emptiness of the discretum if certain positivity 
conditions were assumed. The present numerical results lend no support to the above 
expression as an accurate predictor of the spectrum. 

6.3. Autocorrelation functions 

In many respects the equilibrium fluctuations of a statistical model are of more interest 
than the computation of initial-value relaxation from an arbitrary distribution P(x,  0). 
The scaled velocity autocorrelation function S, ( T )  takes a particularly simple form 
when expressed in terms of Fourier coefficients for an orthogonal polynomial 
representation (Hoare 1971, Raval 1978). We find that 

where aik’ is the first Fourier-Hermite coefficient of the kth eigenfunction. The 
summation may be taken over as many eigenvalues as are available including ‘pseudo- 
eigenvalues’ if desired. We included them here. 

The results of this exercise can be seen in figure 7. While rather more detailed data 
would have been desirable at this point, we can perceive a relatively large alteration in 
the degree of persistence of velocity in passing from y = 1 to y = $ followed by a much 
more gradual shift over the range y = 2-2 to 2-’. Although without a proper under- 
standing of the effect of the continuum no definite explanation can be given, it seems 
reasonable to attribute this relatively sudden change in autocorrelation to the emer- 
gence of the first discrete eigenvalue A 1  from the continuum and its subsequently rapid 
decay towards zero on the T time scale as y + 0. By the time a mass ratio is reached 
where several eigenvalues might contribute to the transient exp(-hkT), the off -diagonal 
coefficients a\k) have so decreased in magnitude that the result is virtually indis- 
tinguishable from the Gaussian limit: S,.(T) = 3 exp(-4y~).  When &(T) is plotted 
logarithmically, a distinct curvature is seen for each mass ratio when T < 0.2, this 
persisting to the region of T 1 for the case y = 1. Outside these regions the decay of 
correlations appears virtually exponential. 

There is again a distinct difference between one- and three-dimensional behaviour, 
for in the latter a much more regular spread of the S,.(T) curves results. However we 
must not make too much of this for it is clear that, whereas in one dimension persistence 
of velocity can only be governed by a discrepancy in mass, in three there is a strong 
geometrical component in the form of glancing collisions. 

t The work of Hoare and Rahman (1973) is in error where these authors suggest that the above bound may be 
converted to a related one for a finite region of emptiness of the discretum in the Lorentz regime y > 1. The 
whole question of the nature of the spectrum in the Lorentz regime would appear to us to remain open. Some 
progress in the rigorous study of these questions has been reported by W Driessler (private communication). 
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Figure 7. Velocity autocorrelation function, S,(T), for Rayleigh test particles as a function 
of mass ratio y. The curves shown are for y = 1 (lowest) to y = 2-7 (highest) in powers of 2. 
The lines for y = 2-’ to 2-4, though distinct at short times, are virtually indistinguishable 
after T = 055. 

6.4. The complex admittance 

A further property of considerable interest is the complex admittance, which contains 
all essential information about the response of an ideal ensemble of charged test 
particles to an applied AC field. Following Kubo (1957), the ratio of the admittance 
a ( w )  at frequency w to the DC conductivity a. at zero frequency can be expressed in the 
form 

Note that the integral in the denominator is the scaled self-diffusion coefficient in the 
Kubo formulation. 

Using again the Fourier-Hermite representation as in equation (6.6) we see that the 
admittance takes the form 

Three main quantities of interest can be extracted from the above formula: the 
conductivity Re(a(w)), which determines the dissipative flux of energy into the heat 
bath, l a (w) i ,  the effective electrical impedance, and q5 = tan-‘[Im(a(w))/Re(a(w))] 
measuring the phase lag in the response of the test particles. The values of these 
quantities, computed according to equation (6.8), may be read from figure 8. 

Again there is a relatively sudden shift in the position of the curves as the discrete 
eigenvalues begin to emerge from the continuum at a mass ratio of about 3 : 1, followed 
by a more gradual development towards a Lorentz type dependence in the Brownian 
motion limit. Not unexpectedly, the mean collision time for stationary particles 
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Rayleigh test particles in an alternating electric field. 
( a )  Re(u(w)), ( b )  Im(cr(w)), ( c )  lcr(w)l. The time 

W scale is as for the spectra in figure 5 .  

-1 w = z (O)-’ = 1 lies within the region of rapid change at low mass ratios, though a field 
frequency of many times the mean collision frequency is required to make the AC 
conductivity effectively zero. 

7. Conclusion 

With these results we may reasonably claim to have elucidated the eigenvalue proper- 
ties of the simplest singular integral operator yet studied which has both clear dynamical 
interpretation and a non-trivial spectrum. The calculations make plain the nature of the 
passage to Brownian motion in a particular system while showing beyond doubt that in 
no approximation tQ its transition operator can we afford to neglect the continuum 
spectrum, especially as concerns the initial value problem at short times and moderate 
mass ratios. They also underline the remarkable qualitative change which may come 
about with the emergence of a first discrete eigenvalue from a continuum, a previously 
unsuspected result which may well have bearing on more complicated model systems. 

As we earlier indicated, this type of computation could be extended to yield 
information about the continuum itself in terms of discrete ‘pseudo-eigenvalues’, which 
may provide the most accessible method of studying the onset of inverse Brownian 
motion in the ‘Lorentz regime’ as y + 00. While certain tentative conclusions may be 
drawn, it is also clear that these require the suspension of doubt on a number of 
mathematical questions of a different order of complexity to those raised here. We have 
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therefore confined ourselves for the present to the discrete relaxation process. An 
extended account of the continuum f.or the special case y = 1 is given by Raval (1978) 
and M R Hoare, M Rahman and S Raval, to be published. 
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